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Super-Sample modes

Mean density fluctuation in the survey volume

Gaussian with variance

Finite Survey Volume
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“Global” and “Local” observables
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Super-sample effect captured by response to δb

response of P (k) to the mean density fluctuation

∂ lnP (k; δb = 0)

∂δb
.
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N -body simulations

I periodic boundary condition → super-sample modes vanish

SubSmall
Large
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Separate Universe simulations
Sirko (05); Gnedin et al. (11); Baldauf&Seljak et al. (11).

Separate Universe

separate universe prescription is simple!

δΩm

Ωm
' δΩΛ

ΩΛ
' −δΩK

1− ΩK
' −2

δh

h
≈ 0.6 δb0,

δa

a
' δb(a)

3
As and ns fixed
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Calibrate response by running 2 separate universe
simulations

Finite difference

∂ lnP (k, δb = 0)

∂δb
' lnP (k, δb = +ε)− lnP (k, δb = −ε)

2ε
.

Need to run 2 separate universe simulations (in principle)
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Calibrating Total effect — Growth + Dilation

Same random seeds
for initial conditions

YL, Hu and Takada, 2014a
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Calibrating Growth effect
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for initial conditions
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Dilation

Dilation → derivative of power spectrum

P (k; δb) = P (k)

[
1− 1

3

d ln k3P (k)

d ln k
δb

]
.
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Calibrated response

Growth
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Summary of theoretical predictions

Beat coupling effect or BC (Hamilton et al. 06, Baldauf&Seljak et al.
11)

δb changes linear growth of short wavelength modes

P (k; δb) ≈ P (k)

[
1 +

68

21
δb

]
.

Halo sample variance or HSV (Sato et al. 09)

δb changes halo number density.

Dilation effect (YL, Hu and Takada 2014a, Sherwin et al 12)

δb changes local expansion factor and shift the BAO scale

P (k; δb) = P (k)

[
1− 1

3

d ln k3P (k)

d ln k
δb

]
.

Yin Li (KICP) Super-Sample Effect Oct. 03, 2014 21 / 43



Compare with halo model

z=0

z=1 (x1/2)

Halo Model
Separate Universe

k [h/Mpc]
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 dl
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(k
)/d
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Outline

What is super-sample effect?

How much does super-sample effect bias the power spectrum?

How and why do we take super-sample effect into account in data analysis?
As excess covariance
As a new parameter
Joint analysis
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Covariance matrix

Covariance matrix characterizes error in data

Cij ≡
〈
P̂ (ki)P̂ (kj)

〉
−
〈
P̂ (ki)

〉〈
P̂ (kj)

〉
,

where P̂ is power spectrum estimator, and ki, kj are k-bins.

I calibrated with simulations or approximated using halo models.

I Cii is the variance of P̂ (ki).

I Cij proportional to the correlation between P̂ (ki) and P̂ (kj).
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Covariance matrix

Cij = CG
ij + CT0

ij + CSSC
ij .

I CG is the Gaussian piece, CG ∝ δij/Ni

I CT0 is the Non-Gaussian piece due to direct nonlinear mode coupling,
(Meiksin&White 99, Scoccimarro et al. 99), CT0 ∝ V −1

W

I CSSC is an extra Non-Gaussian piece — the Super-Sample
Covariance, nonlinear mode coupling due to coherent modulation by
the super-sample modes CSSC ∼ V −1

W

I Non-Gaussian pieces dominated in nonlinear regime
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Super-Sample Covariance ansatz (Takada&Hu 13)

nonlinear mode coupling due to coherent modulation by δb

CSSC
ij = σ2

bP (ki)P (kj)
∂ lnP (ki)

∂δb

∂ lnP (kj)

∂δb
.

Global type response

∂ lnPglobal

∂δb

Local type response

∂ lnPlocal

∂δb

How to test this SSC model?
Accurately calibrate covariance from simulations.
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Covariance from Small and Large volume simulation suites
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Ready to test SSC

SSC ansatz

Cij = CG
ij + CT0

ij + σ2
bP (ki)P (kj)

∂ lnP (ki)

∂δb

∂ lnP (kj)

∂δb
.

1. response calibration with separate universe simulations.

2. Smallbox simulations.

3. Large-volume (Subbox) simulations.

4. check equality.
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Variance (“global”) at z = 0
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Variance (“local”) at z = 0
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SSC scaling with volume

[Gpc3/h3]cube volume

0.1

1

0.001 0.01 0.1 1 10 100
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Outline
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Super-Sample Signal(SSS) (Li, Hu, Takada 14b)

additive model

P̂ (k; δb) = P̂ (k; 0) + P (k)
∂ lnP (k)

∂δb
δb,

Does it work? Let’s try it out on our 3584 subboxes!
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minimum variance unbiased estimator — unbiasedness
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minimum variance unbiased estimator — predicted variance
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Joint analysis with cosmological parameters

flat ΛCDM parameters

lnAs, ns, h, Ωbh
2, Ωch

2

parameter space

p ≡ {δb, lnAs, ns, h}.

parameter responses ←− Fisher analysis

Tµ(k) ≡ ∂ ln k3P (k)

∂pµ
,
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response to cosmological parameters

0.1 1

k [h/Mpc]

0.2

0.5

1

2
Th

T lnAs

Tns−Tns

YL, Hu and Takada, 2014b
Yin Li (KICP) Super-Sample Effect Oct. 03, 2014 39 / 43

http://arxiv.org/abs/1408.1081


response to DC mode
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error degradation

degradation =
error with δb unknown

error if knowing δbexactly
.

V = 12.5 Gpc3/h3

local global
parameter no prior

δb prior

no prior

δb prior

lnAs 4.14

1.09

1.51

1.15
max 5.02 1.13 4.34 2.37

YL, Hu and Takada, 2014b
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Summary

I dilation effect in quasilinear regime was previouly neglected

I super-sample covariance is dominant/significant Non-Gaussian errors

I can also be treated as a new parameter in analysis

I error degraded!

I future: 2D observables; redshift space; response emulator,

Thank you!
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